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EXECUTIVE SUMMARY 
 
A number of US Government agencies are sponsoring research and development efforts 
to improve the accuracy and frequency bandwidth of test verified structural dynamic 
modeling techniques for complex, precision space structure.  The impetus behind these 
efforts is the projection that future precision spacecraft may be too large and flimsy to 
undergo system level testing in the deployed configuration prior to launch.  Without a 
system level test, there will be increased reliance on performance prediction through 
modeling.  A need to improve the capabilities for dynamic response predictions of 
precision structures, without large uncertainty factors, was identified as a critical 
technology to enable this paradigm, and research and development efforts were initiated.  
The objective of this paper was to assess control relevant uncertainty models, and make 
recommendations on their use in the context of the precision structures of interest in the 
Structural Vibration Modeling and Verification program.   
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1.0 INTRODUCTION 
A number of US Government agencies are sponsoring research and development efforts 
to improve the accuracy and frequency bandwidth of test verified structural dynamic 
modeling techniques for complex, precision space structure.  The impetus behind these 
efforts is the projection that future precision spacecraft may be too large and flimsy to 
undergo system level testing in the deployed configuration prior to launch.  This may be 
due to a lack of inherent structural integrity of the deployed system in a 1-g gravity field 
or the cost and complexity of designing and building an adequate gravity offload system. 
It’s envisioned that these structures will take on their true performance characteristics 
only in the weightlessness of space.  
 
This represents a new paradigm for the spacecraft industry.  Without a system level test, 
there will be increased reliance on performance prediction through modeling.  A need to 
improve the capabilities for dynamic response predictions of precision structures, without 
large uncertainty factors, was identified as a critical technology to enable this paradigm, 
and research and development efforts were initiated.  One such effort is the Structural 
Vibration Modeling and Verification (SVMV) program.  The objective of this program 
was to develop and validate modeling capabilities and techniques using available 
complex testbed structures.  Two contractors were competitively selected to carry out the 
work.  A successful SVMV program will move us closer to the capability of designing, 
modeling, and building high performance structures in the frequency range of interest 
without large model uncertainty factors and enhance model based system performance 
predictions. 
 
The AFRL/VSSV supported the sponsoring agency on the SVMV program by addressing 
four specific tasks: 
 
A) Metric Evaluation and Plant Identification 
The contractors proposed Frequency Response Function (FRF) metrics with which they 
will evaluate system identification model quality in terms of FRF data.  An objective of 
this task was to gain insight into the contractor’s efforts, and develop an understanding of 
threshold levels for the metrics.  The contractors also used proprietary plant identification 
software during the program.  A second objective of this task was to evaluate the 
performance of the plant identification tools with respect to commercially available 
software and published methods.   
 
B) SVMV Technical Recommendations 
The AFRL/VSSV worked with other members of the Sponsor’s technical support team to 
capture information from the SVMV program and present it in suitable forms for use by 
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the Sponsor, future system program managers, and the technical community.   
 
C) Model Uncertainty in Structural Control 
An assumption of the new paradigm is that some form of structural control will be 
available, and necessary, to “tune” the structure on-orbit.  This assumption has 
implications for structure design, modeling, fabrication as well as structural control 
systems.  High-fidelity models may not be able to account for build-to-build variations, 
response differences between 0-g and 1-g environments, and structural changes due to the 
space environment.  All of these factors must be captured in a control-relevant form in 
order to be used in the design and analysis of robust structural controllers.  The objective 
of this task was to assess control relevant uncertainty models, and make 
recommendations on their use in the context of the precision structures of interest in the 
SVMV program.   
 
D) Propagation of Errors 
Since system level tests are omitted in the new paradigm, it is important to understand 
how subsystem model properties affect system level models and performance predictions.  
For example, the assumption of proportional damping carries implications about the 
physics of the structure captured in the model.  However, proportional damping applied 
at the subsystem level may not lead to proportionally damped models at the system level 
using component mode synthesis techniques.  Therefore the underlying assumptions of 
the physics have been affected.  The objective of this task was to make recommendations 
on the propagation of substructure sensitivities to system level optical performance 
quantities.   
 
This report contains results of task C.  The results of Task B effort were reported to the 
SVMV Sponsor in a different form.  Upon completion, results from Tasks A and D will 
be compiled in other reports. Chapter 2 lists some relevant articles in the area of model 
uncertainty representation and quantification for computational model performance 
prediction reliability enhancement. Chapter 3 lists some relevant articles in the stochastic 
robust control area that deal with the synthesis of performance reliability based 
controllers. Chapter 4 discusses activities for further investigation relative to control of 
uncertain structures.  Budget and schedule limitations precluded the development of a 
more in-depth report. 
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2.0 UNCERTAINTY MODELS 
Representing and quantifying uncertainties associated with computational models for 
performance prediction reliability enhancement is an area of active research. The 
application areas of this research vary from weather prediction to prediction of nuclear 
weaponry performance. This research has direct applicability to the SVMV paradigm in 
that SVMV decisions will be made to launch a space vehicle based solely on 
computational model predictions that the performance requirements are satisfied. This 
computational model will not have been validated, in the standard sense of validation, at 
the integrated vehicle level. Thus, quantitatively capturing in the computational model 
framework that which is known as well as that which is uncertain with regard to the space 
vehicle performance are equally important in establishing reliability in the computational 
model performance predictions. 
 
Various forms of uncertainty representation are being considered to enhance 
computational model prediction reliability. The most widely known and developed 
methods are available within the mathematics of probability theory, such as frequentist 
and Bayesian estimation. Researchers are also exploring the utility of non-traditional 
methods of uncertainty representation and quantification for engineering modeling 
applications such as risk and reliability analysis [22]-[26]. Described broadly as 
Generalized Information Theory (GIT), these approaches are listed in Table 1:  

Table 1 Generalized Information Theory Approaches 

• Interval Analysis  
• Dempster-Shafer Evidence Theory  
• Fuzzy Systems  
• Possibility Theory  
• Rough Sets 

• Imprecise Probabilities 
• Nonadditive Measures 
• Random Sets 
• Probability Bounds 
• Probabilistic Robustness 

 
This chapter lists some relevant articles, along with their abstracts and in some cases their 
introduction, from this area of research that are of interest to the SVMV paradigm. 
 
[5] de Lima, B.S.L.P., and Ebecken, N. F.F., “A comparison of models for uncertainty 
analysis by the finite element method”, Finite Elements in Analysis and Design Vol 34 
(2), 2000, pp. 211-232.

Abstract: Uncertainty in structural engineering analysis exists in the architecture 
of a structural system, its basic parameters, the information resulting from the 
abstracted aspects of the system, and the non-abstracted or unknown aspects of 
the system. Also, uncertainty is present as a result of prediction models, analysis 
and design of structures, and general lack of knowledge about the behavior of real 
structures. One of the important factors that lead to errors in numerical predictions 
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is the degree of precision in obtaining the relevant parameters. In this paper we 
discuss two different methodologies:  

1. Classical probabilistic approach, in which the properties are treated 
as random variables. Stochastic Finite Element Methods are 
examined using both Monte Carlo Simulation and Perturbation 
Methods.  

2. Possibilistic approach, by a model based on the theory of fuzzy 
sets. 

Some results are presented to point out the main characteristics of the two 
methodologies. 

 
[7] Helton, J.C., Johnson, J.D., Oberkampf, W.L., “An exploration of alternative 
approaches to the representation of uncertainty in model predictions,” Reliability 
Engineering and System Safety, Vol. 85, 2004, pp. 39-71.

Abstract: Several simple test problems are used to explore the following 
approaches to the representation of the uncertainty in model predictions that 
derives from uncertainty in model inputs: probability theory, evidence theory, 
possibility theory, and interval analysis. Each of the test problems has rather 
diffuse characterizations of the uncertainty in model inputs obtained from one or 
more equally credible sources. These given uncertainty characterizations are 
translated into the mathematical structure associated with each of the indicated 
approaches to the representation of uncertainty and then propagated through the 
model with Monte Carlo techniques to obtain the corresponding representation of 
the uncertainty in one or more model predictions. The different approaches to the 
representation of uncertainty can lead to very different appearing representations 
of the uncertainty in model predictions even though the starting information is 
exactly the same for each approach. To avoid misunderstandings and, potentially, 
bad decisions, these representations must be interpreted in the context of the 
theory/procedure from which they derive. 

 
[8] Guest Editorial, “Alternative representations of epistemic uncertainty,” Reliability 
Engineering and System Safety, Vol. 85, 2004, pp. 1-10, A workshop on alternative 
representations of epistemic uncertainty was sponsored by Sandia National Laboratories 
in Albuquerque, NM, on August 6–7, 2002.

Abstract: This workshop was organized around the solution and discussion of a 
set of “Challenge Problems”. The goal of the workshop was to bring together a 
diverse group of individuals with an interest in the representation of epistemic 
uncertainty for interaction and discussion. The intent of the Challenge Problems 
was to provide a central focus around which techniques and structures for the 
representation of epistemic uncertainty could be presented, compared and 
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discussed. The following special issue of Reliability Engineering and System 
Safety contains papers prepared and, in most cases, presented in conjunction with 
this workshop. 

 
[9] Oberkampf, W.L., DeLand, S.M., Rutherford, B.M., Diegert, K.V., and Alvin, K.F., 
“Error and uncertainty in modeling and simulation,” Reliability Engineering and System 
Safety, Vol. 75, 2002, pp. 333-357.

Abstract: This article develops a general framework for identifying error and 
uncertainty in computational simulations that deal with the numerical solution of 
a set of partial differential equations (PDEs). A comprehensive, new view of the 
general phases of modeling and simulation is proposed, consisting of the 
following phases: conceptual modeling of the physical system, mathematical 
modeling of the conceptual model, discretization and algorithm selection for the 
mathematical model, computer programming of the discrete modal, numerical 
solution of the computer program model, and representation of the numerical 
solution. Our view incorporates the modeling and simulation phases that are 
recognized in the systems engineering and operations research communities, but it 
adds phases that are specific to the numerical solution of PDEs. In each of these 
phases, general sources of uncertainty, both aleatory and epistemic, and error are 
identified. Our general framework is applicable to any numerical discretization 
procedure for solving ODEs or PDEe. To demonstrate this framework, we 
describe a system-level example: the flight of an unguided, rocket-boosted, 
aircraft-launched missile. This example is discussed in detail at each of the six 
phases of modeling and simulation. Two alternative models of the flight dynamics 
are considered, along with aleatory uncertainty of the initial mass of the missile 
and epistemic uncertainty in the thrust of the rocket motor. We also investigate 
the interaction of modeling uncertainties and numerical integration error in the 
solution of the ordinary differential equations for the flight dynamics. 
 

[10] Oberkampf, W.L., Trucano, T.C., and Hirsch, C., “Verification, Validation, and 
Predictive Capability in Computational Engineering and Physics,” Proc. Foundations for 
Verification and Validation in the 21st Century Workshop, Johns Hopkins University, 
Laurel, MD, 22-23 Oct 2002.

Summary: Computer simulations of physical processes are being relied on to an 
increasing degree for design, performance, reliability, and safety of engineered 
systems. Computational analyses have addressed the operation of systems at 
design conditions, off-design conditions, and accident scenarios. For example, the 
safety aspects of products or systems can represent an important, sometimes 
dominant, element of numerical simulations. The potential legal and liability costs 
of hardware failures can be staggering to a company, the environment, or the 
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public. This consideration is especially crucial, given that we may be interested in 
high-consequence systems that cannot ever be physically tested, including the 
catastrophic failure of a full-scale containment building for a nuclear power plant, 
explosive damage to a high-rise office building, ballistic missile defense systems, 
and a nuclear weapon involved in a transportation accident. Developers of 
computer codes, analysts who use the codes, and decision makers who rely on the 
results of the analyses face a critical question: How should confidence in 
modeling and simulation be critically assessed? Verification and validation 
(V&V) of computational simulations are the primary methods for building and 
quantifying this confidence. Briefly, verification is the assessment of the accuracy 
of the solution to a computational model. Validation is the assessment of the 
accuracy of a computational simulation by comparison with experimental data. In 
verification, the relationship of the simulation to the real world is not an issue. In 
validation, the relationship between computation and the real world, i.e., 
experimental data, is the issue. This paper presents our viewpoint of the state of 
the art in V&V in computational physics. (In this paper we refer to all fields of 
computational engineering and physics, e.g., computational fluid dynamics, 
computational solid mechanics, structural dynamics, shock wave physics, 
computational chemistry, etc., as computational physics.) We do not provide a 
comprehensive review of the multitudinous contributions to V&V, although we 
do reference a large number of previous works from many fields. We have 
attempted to bring together many different perspectives on V&V, highlight those 
perspectives that are effective from a practical engineering viewpoint, suggest 
future research topics, and discuss key implementation issues that are necessary to 
improve the effectiveness of V&V. We describe our view of the framework in 
which predictive capability relies on V&V, as well as other factors that affect 
predictive capability. Our opinions about the research needs and management 
issues in V&V are very practical: What methods and techniques need to be 
developed and what changes in the views of management need to occur to 
increase the usefulness, reliability, and impact of computational physics for 
decision making about engineering systems? We review the state of the art in 
V&V over a wide range of topics; for example, prioritization of V&V activities 
using the Phenomena Identification and Ranking Table (PIRT), code verification, 
software quality assurance (SQA), numerical error estimation, hierarchical 
experiments for validation, characteristics of validation experiments, the need to 
perform nondeterministic computational simulations in comparisons with 
experimental data, and validation metrics. We then provide an extensive 
discussion of V&V research and implementation issues that we believe must be 
addressed for V&V to be more effective in improving confidence in 
computational predictive capability. Some of the research topics addressed are 
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development of improved procedures for the use of the PIRT for prioritizing 
V&V activities, the method of manufactured solutions for code verification, 
development and use of hierarchical validation diagrams, and the construction and 
use of validation metrics incorporating statistical measures. Some of the 
implementation topics addressed are the needed management initiatives to better 
align and team computationalists and experimentalists in conducting validation 
activities, the perspective of commercial software companies, the key role of 
analysts and decision makers as code customers, obstacles to the improved 
effectiveness of V&V, effects of cost and schedule constraints on practical 
applications in industrial settings, and the role of engineering standards 
committees in documenting best practices for V&V. 
 

[11] DeLaurentis, L.A., and Mavris, D.N., “Uncertainty modeling and management in 
multidisciplinary analysis and synthesis,” AIAA-2000-422, Aerospace Sciences Meeting 
and Exhibit, 38th, Reno, NV, Jan. 10-13, 2000.

Abstract: The complex, multidisciplinary nature of aerospace design problems, as 
well as the requirement to examine life-cycle characteristics, have exposed a need 
to model and manage uncertainty. In this paper, a formal approach for modeling 
uncertainty in such design problems is presented. The approach includes 
uncertainties associated with mathematical models, operation environment, 
response measurement, and input requirements. In addition, a new method for 
propagating this uncertainty (in an efficient manner) to find robust design 
solutions is developed and described. The uncertainty model combined with the 
probabilistic robust design technique is a critical advancement in 
multidisciplinary system design, in that it identifies solutions that have a 
maximum probability of success. Continued research in both uncertainty 
modeling and efficient robust design methods appears essential. Both the 
uncertainty model and robust design technique are demonstrated on an example 
problem involving the design of a supersonic transport aircraft using the relaxed 
static stability technology. At each step, validation studies are performed and 
initial results indicate that the robust design method represents an accurate 
depiction of the problem. This depiction provides critical insight into where and 
why uncertainty affects the family of design solutions. 
 

[12] Oberkampf, W.L., “Methodology for the Estimation of Uncertainty and Error in 
Computational Simulation,” Proc. Nondeterminitistic Approaches and Their Potential for 
Future Aerospace Systems, NASA Langley Research Center, Hampton, VA, Sep 2001.  

Summary: Our focus is on developing a framework for identifying and estimating 
error and uncertainty in nondeterministic computational simulation. This 
framework is composed of six phases, which represent a synthesis of the activities 
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recognized in the systems engineering (operations research) community, the 
probabilistic risk assessment community, and the numerical methods community. 
Our framework emphasizes models that are given by a set of partial differential 
equations (PDEs) that must be solved numerically, although the framework is also 
applicable to modeling in general. We stress a clear distinction between the 
specification of the system, which is modeled by a set of PDEs, and the 
environment, which should be representative of the boundary conditions and 
excitation for the PDEs. We make a distinction between error and uncertainty so 
that the issues of representation and propagation of each is aided. The issue of 
numerical solution error is generally ignored in risk assessment analyses and 
nondeterministic simulations. Neglecting numerical solution error can be 
particularly detrimental to uncertainty estimation when the mathematical models 
of interest are cast in terms of nonlinear PDEs. Types of numerical error that are 
of concern in the numerical solution of PDEs are spatial discretization error in 
finite element and finite difference methods, temporal discretization error in time-
dependent simulations, and error due to discrete representation of strongly 
nonlinear interactions. 
 

[13] Trucano, T.G., “Prediction and Uncertainty in Computational Modeling of Complex 
Phenomena: A Whitepaper”, SAND98-2776, Computational Physics Research and 
Development, Albuquerque, NM, December 1998.

Abstract: This report summarizes some challenges associated with the use of 
computational science to predict the behavior of complex phenomena. As such, 
the document is a compendium of ideas that have been generated by various staff 
at Sandia. The report emphasizes key components of the use of computational to 
predict complex phenomena, including computational complexity and correctness 
of implementations, the nature of the comparison with data, the importance of 
uncertainty quantification in comprehending what the prediction is telling us, and 
the role of risk in making and using computational predictions. Both broad and 
more narrowly focused technical recommendations for research are given. Several 
computational problems are summarized that help to illustrate the issues we have 
emphasized. The tone of the report is informal, with virtually no mathematics. 
However, we have attempted to provide a useful bibliography that would assist 
the interested reader in pursuing the content of this report in greater depth. 
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3.0 STOCHASTIC ROBUST CONTROL  
The work in this area consisted of reviewing the state-of-the art in stochastic robust 
control and determining the applicability of the technique within the SVMV paradigm. 
An assumption of the new paradigm is that some form of structural control will be 
available, and necessary, to “tune” the structure on-orbit.  This assumption has 
implications for structure design, modeling, fabrication as well as structural control 
systems.  High-fidelity models may not be able to account for build-to-build variations, 
response differences between 0-g and 1-g environments, and structural changes due to the 
space environment.  All of these factors must be captured in a control-relevant form in 
order to be used in the design and analysis of robust structural controllers.   
 
Of the many uncertainty representations and models discussed in the papers of the 
previous chapter, the most widely known and developed methods are available within the 
mathematics of probability theory. There uncertainty is described in terms of probability 
density functions and propagated through the computational model resulting in 
probability distributions for the performance metrics of interest. This approach is 
currently being applied in industry and will probably be the preferred method of dealing 
with uncertainties in the near future. Probability theory gives a way of representing 
uncertainties but not a method of quantifying them. Quantifying uncertainties is still a 
tricky area and even more so when very few samples are available to derive statistics. 
Engineering judgment may be required to fill this gap. The following references show 
that probability theory tends to be relied upon when performing practical design and 
analyses: 
 
[1] Hasselman, T., “Quantification of Uncertainty in Structural Dynamic Models,” 
Journal of Aerospace Engineering, Vol. 14, No. 4, 2001, pp. 158-165.  

Summary: This paper looks at “quantification of modeling uncertainty” due to 
experimental uncertainty, parametric uncertainty, and model form uncertainty. 
Uncertainty derived by comparing analysis and test modes. It derives linear 
perturbation result equations and discusses damping uncertainty. The authors 
apply uncertainty propagation (linear covariance, interval propagation using the 
vertex method, numerical simulation using Monte Carlo method). Predictive 
accuracy is discussed. Model uncertainty quantification general methodology is 
based on the correlation of modal analysis and test data. 

 
[2] Bourgault, F., “Model Uncertainty and Performance Analysis for Precision Controlled 
Space Structures,” MSc. Dissertation, Department of Aeronautics and Astronautics, 
Massachusetts Institute of Technology, Dec. 2000.

Abstract: The purpose of this thesis is to provide confidence for the designer that 
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a concept of a future space-based telescope will meet its very stringent 
requirements. More specifically, our goal is to predict the amount of uncertainty 
in the performance prediction made through out the design process. Also, given a 
statistical database for structural uncertainty, the methodology presented will 
establish the probability of success of a particular architecture. The traditional 
design process starts by evaluating and comparing the performance of different 
concepts by using simplified structural and disturbance models. As the process 
progresses the different solutions are evaluated and the most promising concept is 
retained and refined. Later on, some preliminary structural testing is performed, 
and the finite element model is updated to reflect the reality more accurately. 
Eventually, when the design process approach completion and is moving toward 
production, most of the structural elements have been tested, and the performance 
predictions of the model should converge to the actual system performance. Large 
flexible space structures present a problem in using this approach because they are 
often too flexible to support their own weight and/or too large to fit inside any 
laboratory facilities to be tested fully assembled. For example, it would be 
impractical to test the whole assembly of the International Space Station or SIM 
on the ground. Also, during the preliminary design phase, no test data are 
available to update the models. Nevertheless, even when the model is very mature 
and has been updated after experimental testing, a discrepancy remains between 
the predicted and actual performance of the system. These uncertainties are due to 
various sources of variability in the system: variable noises (sources and levels), 
testing conditions and environmental factors, assembly/reassembly, shipset, 
disturbance levels, and others. How then, can we have confidence that a particular 
concept will meet the requirements if the only tool we have are finite element 
models that may not be accurate? The solution is to try to estimate the range of 
uncertainty around our nominal model performances. Since in the early design 
phase no test data are available, our best bet will be to use past experience to 
predict the expected uncertainty range on the performances of a new design. 
Using sensitivity information and statistical uncertainties from the literature (i.e.: 
modal mass and stiffness parameters uncertainties, as well as modal damping 
ratios uncertainties), we demonstrate with different techniques how to obtain 
estimates of the performance predictions uncertainty ranges. We also obtain the 
probability distribution function of the performance of the system and use it to 
deduce its “probability of success” (i.e. the probability that once built the actual 
structure will satisfy the performance requirements). This last result, which can be 
obtained without too much computation, has a great useful potential and might 
become an integral design step for high performance controlled structures as it 
promises to help build confidence in the model predictions and could be used in 
the so called error budgeting phase. The techniques are demonstrated on a 2 
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degree-of-freedom sample case and on a more realistic system: the Space 
Interferometer Mission (SIM) Classic model. 

 
[3] Campbell, M. E., and Grocott, C. O., “Parametric Uncertainty Model for Control 
Design and Analysis,” IEEE Transactions on Control System Technology, Vol. 7, No. 1, 
1999, pp. 85-96.

Summary: Research focused on characterization of model uncertainties for 
control design and analysis. Objective: accurate model development of parametric 
uncertainties for control design and analysis of a structural system. Parametric 
uncertainties include mismodeling of material, and geometric properties, 
mismodeled damping, discretization effects, and nonlinearities. Paper assumes a 
linear stochastic perturbation with first-and second-order statistics of frequencies 
damping ratio and mode shapes. Run repeated test and use system identification 
to get parameters, uses modal coordinates, used collocated actuator/sensors to 
scale model shapes correctly for uncertainty model development. Uncertain mode 
shapes model not utilized in 0-g due to sensitivity of system to this and lack of 
confidence in uncertainty model. 

 
[4] Crawley, E.F., Barlow, M.S., van Schoor, M.C., Masters, B., and Bicos, A.S., 
“Measurement of the Modal Parameters of a Space Structure in Zero Gravity,” Journal 
Of Guidance, Control, and Dynamics, Vol. 18, No. 3, May-June 1995, pp. 385-394.  

Abstract: An analytic and experimental study of the changes in the modal 
parameters of space structural test articles from 1 to 0 g is presented. Deployable, 
erectable, and rotary modules were assembled to form three one- and two-
dimensional structures in which variations in bracing wire and rotary joint preload 
could he introduced. The structures were modeled as if hanging from a suspension 
system in 1 g, and unconstrained, as if free floating in 0 g. The analysis is 
compared with ground experimental measurements made on a springwire 
suspension system with a nominal plunge frequency of 1 Hz and with 
measurements made on the Shuttle middeck. The degree of change in linear 
modal parameters, as well as the change in nonlinear nature of the response, is 
examined. Trends in modal parameters are presented as a function of force 
amplitude, joint preload, and ambient gravity level. 
For the normal engineering approach, the drawings and handbook properties leads 
to hardware development and build. After the hardware is built, a reconciliation 
process is begun. This process compares results from the hardware and the 
computational model. Detected discrepancies are corrected by either tuning up the 
computational model or the hardware, whichever is deemed to be erroneous after 
analysis of the results from each. The validation process includes all of the 
anomalies listed in the flow path. However in that this setting computational 
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numerical inaccuracies and other inaccuracies are coupled. Successful validation 
requires a good knowledge of material properties, geometry, boundary conditions, 
and small computational inaccuracies.  

 
Since probability theory likely will be used for representing and quantifying uncertainty 
in computational model prediction problems, including structural finite-element models, 
having a control system synthesis methodology for such plant models would be 
beneficial. Given that the computational model is probabilistic in its parameters, a 
consistent control system synthesis methodology would be probabilistic yielding 
probability of success on the performance metrics of interest. In the literature, such a 
control system synthesis methodology is loosely referred to as stochastic robust control. 
Typical stochastic control is a framework for synthesizing controllers for systems with 
stochastic inputs. Stochastic robust control is a framework for synthesizing controllers for 
systems that have stochastic parameters in addition to stochastic inputs. There are not 
many published results in this area. A few relevant publications, along with their 
abstracts and in some cases their introductions are listed. 
 
[6] Zang, T.A., Hemsch, M.J., Hilburget, M.W., Kenny, S.P., Luckring, J.M., Maghami, 
P, Padula, S.L., and Stroud, W.J., “Needs and Opportunities for Uncertainty-Based 
Multidisciplinary Design Methods for Aerospace Vehicles”, NASA/TM-2002-211462, 
July 2002, Langley Research Center, Hampton, VA.  

Summary: This report consists of a survey of the state of the art in uncertainty-
based design together with recommendations for a Base research activity in this 
area for the NASA Langley Research Center. In particular, it focuses on the needs 
and opportunities for computational and experimental methods that provide 
accurate, efficient solutions to nondeterministic multidisciplinary aerospace 
vehicle design problems. We use the term uncertainty-based design to describe 
this type of design method. The two major classes of uncertainty-based design 
problems are robust design problems and reliability-based design problems. A 
robust design problem seeks a design that is relatively insensitive to small 
changes in the uncertain quantities. A reliability-based design seeks a design that 
has a probability of failure that is less than some acceptable (invariably small) 
value.  
Traditional design procedures for aerospace vehicle structures are based on 
combinations of factors of safety and knockdown factors. The aerodynamic 
design procedures used by the industry are exclusively deterministic. There has 
been considerable work on “robust controls,” but this work has been limited to 
using norm bounds on the uncertain variables. Reliability-based design methods 
have been used within civil engineering for several decades and in aircraft engine 
design for about a decade. Applications to the structural design of airframes are 
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only now starting to emerge. Only academic studies of reliability-based design 
methods within the aerodynamics and controls disciplines are known to the 
authors.  
To use uncertainty-based design methods, the various uncertainties associated 
with the design problem must be characterized and managed, and these 
characterizations must be exploited. In the context of computational modeling and 
simulation, two complementary categorizations of uncertainties are useful. One 
categorization distinguishes between parameter uncertainties and model form 
uncertainties. Parameter uncertainties are those uncertainties associated either 
with the input data (boundary conditions or initial conditions) to a computational 
process or with basic parameters that define a given computational process, such 
as the coefficients of phenomenological models. Model form uncertainties are 
uncertainties associated with model validity, i.e., whether the nominal 
mathematical model adequately captures the physics of the problem. Systematic 
procedures for characterizing and managing uncertainties in experimental 
activities include design of experiment methods and statistical process control 
techniques. The former focuses more on characterizing the uncertainties and the 
latter more on managing them.  
Parameter uncertainties are typically specified in terms of probability density 
functions, membership functions, or interval bounds. Model form uncertainties 
are very difficult to characterize. Generic techniques are available for assessing 
the effects of uncertainties on discipline and system performance predictions, and 
some optimization methods can account for uncertainties. However, better and 
less resource-intensive methods are needed for both uncertainty propagation and 
optimization under uncertainty. Certainly, the deployment of existing and new 
techniques within the aerodynamic, controls, structures, and systems analysis 
disciplines for applications to aerospace vehicles is critically needed. 

 
[14] Crespo, L. G., “Probabilistic Formulations to Robust Optimal Control”, AIAA-2004-
1667-CP, Proceedings, AIAA Structures, Structural Dynamics, and Materials 
Conference, Palm Springs, CA, April 2004, pp. 1-21.  

Abstract: This paper presents a study on the design of robust compensators by 
using random variables to model parametric uncertainty. In this framework, all 
plants in the uncertain set are weighted according to their chance of occurrence. 
This allows us to assess and reduce the conservatism in which conventional robust 
control techniques unnecessarily incur. The propagation of the uncertain plant 
through conventional control analysis tools leads to probabilistic metrics of 
stability and performance. Several control formulations, in which some type of 
robust optimality in the probabilistic sense is aimed, are presented herein. 
Examples that admit closed form expressions for the random variables and 
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processes that determine the closed-loop stability and performance are used to 
elucidate the nature of the problem at hand. 

 
[15] May, B. S., and Beck, J. L., “Probabilistic Control For The Active Mass Driver 
Benchmark Structural Model,” Earthquake Engineering And Structural Dynamics, Vol 
27, 1998, pp. 1331–1346.

Summary: A probability-based robust control design methodology is presented 
that is applied to the ‘benchmark system’, which is a high-fidelity model of an 
active-mass-driver laboratory structure. For the controller design, the objective is 
to maximize the probability that the uncertain structure/controller system achieves 
satisfactory performance when subject to uncertain excitation. The controller’s 
robust performance is computed for a set of possible models by weighting the 
conditional performance probability for a particular model with the probability of 
that model, then integrating over the set of possible models. This is accomplished 
in an efficient manner using an asymptotic approximation. The probable 
performance is then maximized over the class of constant-gain acceleration-
feedback controllers to find the optimal controller. This control design method is 
applied to a reduced-order model of the benchmark system to obtain four 
controllers, two that are designed on the basis of a ‘nominal’ system model and 
two ‘robust’ ones that consider model uncertainty. The performance is evaluated 
for the closed-loop systems that are subject to various excitations. 
The probabilistic robust control approach creates controllers that incorporate 
probabilistic descriptions of the model uncertainties into the design of the optimal 
controller. The controllers are designed to satisfy probable performance over the 
class of uncertain models, and may be less conservative than those designed using 
methods based on the worst-case performance (e.g. H∞-control and its 
derivatives), where the ‘worst’ model may be quite improbable. Probabilistic 
uncertainty descriptions can arise when models of the system are identified using 
response data, or when the modeling uncertainties in describing the system are 
quantified based on engineering experience. 

 
[16] Yuen, K. V., and Beck, J. L., “Reliability-based robust control for uncertain 
dynamical systems using feedback of incomplete noisy response measurements,” 
Earthquake Engineering And Structural Dynamics, Vol 32, 2003, pp. 751-770.  

Summary: A reliability-based output feedback control methodology is presented 
for controlling the dynamic response of systems that are represented by linear 
state-space models. The design criterion is based on a robust failure probability 
for the system. This criterion provides robustness for the controlled system by 
considering a probability distribution over a set of possible system models with a 
stochastic model of the excitation so that robust performance is expected. The 
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control command signal can be calculated using incomplete response 
measurements at previous time steps without requiring state estimation. Examples 
of robust structural control using an active mass driver on a shear building model 
and on a benchmark structure are presented to illustrate the proposed method. 
Because complete information about a dynamical system and its environment are 
never available, the system and excitation cannot be modeled exactly. Classical 
control design methods based on a single nominal model of the system may fail to 
create a control system that provides satisfactory performance. Robust control 
methods (e.g. H2, H∞ , and μ-synthesis, etc.) were therefore proposed so that the 
optimal controller can provide robust performance and stability for a set of 
‘possible’ models of the system. In a probabilistic robust control approach, an 
additional ‘dimension’ is introduced by using probabilistic descriptions of all the 
possible models when selecting the controller to achieve optimal performance. 
These probability distributions give a measure of how plausible the possible 
parameter values are, and they may be obtained from engineering judgment or 
Bayesian system identification methods. 
Over the last decade or so, there has been increasing interest in probabilistic, or 
stochastic, robust control theory. Monte Carlo simulations methods have been 
used to synthesize and analyze controllers for uncertain systems. First and second-
order reliability methods have been incorporated to compute the probable 
performance of linear-quadratic regulator controllers (LQR). On the other hand, 
an efficient asymptotic expansion has been used to approximate the probability 
integrals that are needed to determine the optimal parameters for a passive tuned 
mass damper and the optimal gains for an active mass driver for robust structural 
control. The proposed controller feeds back output measurements at the current 
time only, where the output corresponds to certain response quantities that need 
not be the full state vector of the system. However, there is additional information 
from past output measurements which may improve the performance of the 
control system. 

 
[17] Spencer, B. F., Sain, M.K., Won, C.H., Kaspari, D.C., and Sain, P. M., “Reliability-
Based Measures Of Structural Control Robustness,” Structural Safety, Vol. 15, 1994, pp. 
111-129.

Abstract: Because of the uncertainty inherent in engineering structures, consistent 
probabilistic stability/performance measures are essential to accurately assessing 
and comparing the robustness of structural control systems. An approach is 
presented herein for calculating such probabilistic measures for a controlled 
structure. First and second order reliability methods (FORM/SORM) are shown to 
be appropriate for the required calculations. The concepts are illustrated through 
several examples of seismically excited structures with active protective systems. 
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[18] Yuen, K-V., “Model Selection Identification and Robust Control for Dynamical 
Systems,” Ph.D. Dissertation, Department of Civil Engineering, California Institute of 
Technology, Apr. 2002.  

Abstract: To fully exploit new technologies for response mitigation and structural 
health monitoring, improved system identification and controller design 
methodologies are desirable that explicitly treat all the inherent uncertainties. In 
this thesis, a probabilistic framework is presented for model selection 
identification and robust control of smart structural systems under dynamical 
loads, such as those induced by wind or earthquakes. First, a probabilistic based 
approach is introduced for selecting the most plausible class of models for a 
dynamical system using its response measurements. The proposed approach 
allows for quantitatively comparing the plausibility of different classes of models 
among a specified set of classes. Then, two probabilistic identification techniques 
are presented. The first one is for modal identification using nonstationary 
response measurements and the second one is for updating nonlinear models 
using incomplete noisy measurements only These methods allow for updating of 
the uncertainties associated with the values of the parameters controlling the 
dynamic behavior of the structure by using noisy response measurements only. 
The probabilistic framework is very well suited for solving this nonunique 
problem and the updated probabilistic description of the system can be used to 
design a robust controller of the system. It can also be used for structural health 
monitoring. Finally, a reliability based stochastic robust control approach is used 
to design the controller for an active control system. Feedback of the incomplete 
response at earlier time steps is used without any state estimation. The optimal 
controller is chosen by minimizing the robust failure probability over a set of 
possible models for the system. Here, failure means excessive levels of one or 
more response quantities representative of the performance of the structure and 
the control devices. When calculating the robust failure probability, the 
plausibility of each model as a representation of the system’s dynamic behavior is 
quantified by a probability distribution over the set of possible models; this 
distribution is initially based on engineering judgment but it can be updated using 
the aforementioned system identification approaches if dynamic data become 
available from the structure. Examples are presented to illustrate the proposed 
controller design procedure, which includes the procedure of model selection, 
identification and robust control for smart structures. 

 
[19] Cresp, L.G., “Stochastic Control Synthesis of Systems with Structured Uncertainty”, 
NASA/CR-2003-212167 (NIA Report No. 2003-01), Dec 2003, National Institute of 
Aerospace, Hampton, VA.
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Summary: This paper presents a study on the design of robust controllers by using 
random variables to model structured uncertainty for both SISO and MIMO 
feedback systems.  Once the parameter uncertainty is prescribed with probability 
density functions, its effects are propagated through the analysis leading to 
stochastic metrics for the system's output.  Control designs that aim for 
satisfactory performances while guaranteeing robust closed loop stability are 
attained by solving constrained non-linear optimization problems in the frequency 
domain.  This approach permits not only to quantify the probability of having 
unstable and unfavorable responses for a particular control design but also to 
search for controls while favoring the values of the parameters with higher chance 
of occurrence.  In this manner, robust optimality is achieved while the 
characteristic conservatism of conventional robust control methods is eliminated.  
Examples that admit closed form expressions for the probabilistic metrics of the 
output are used to elucidate the nature of the problem at hand and validate the 
proposed formulations. 
The main requirement of feedback control is to achieve acceptable levels of 
performance in the presence of uncertainty. Fundamental trade offs and 
compromises between these two aspects motivate the entire body of feedback 
theory. While performance concerns aspects such as reference tracking, 
disturbance rejection, bounded control effort, etc., uncertainty appears as a result 
of the inevitable discrepancies between the physical problem and its deterministic 
mathematical model. Ignorance on the system’s exact dynamics, on the actual 
operating conditions and the purposeful choice of a simplified representation of 
the physical problem exemplify this aspect. In this context, uncertainty can be 
classified as structured (or parametric) and unstructured. The first kind 
corresponds to inaccuracies on the parameters of the model while the second one 
corresponds to unmodeled dynamics. Uncertainty can be modeled in many ways 
depending upon the desired quality of its mathematical description. Differential 
sensitivity, multi-models, interval analysis, perturbations, fuzzy sets and 
probabilistic methods have been used. The effects of uncertainty on the stability 
associated with the prescribed control solutions have been studied by both 
deterministic and stochastic means. These analysis tools however, have not been 
integrated to the control design process. The methods most commonly used for 
robust control design are μ-synthesis and H∞ optimization. In these, uncertainty is 
modeled with norm-bounded complex perturbations of fixed but arbitrary 
structure about its nominal form. This treatment is extensively used primarily 
because it leads to a tractable set of sufficient conditions for robust stability. Such 
approaches however, have the following drawbacks: (i) the crudeness of the 
uncertainty description usually leads to redundant and physically impossible 
plants, then to highly conservative designs, (ii) it is not feasible to favor scenarios 
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with higher chance of occurrence among all the possible ones, and as a result, 
robust optimality is precluded, (iii) a quantitative description of the robustness of 
the solution is unattainable and (iv) the resulting controllers are so complex that 
model reduction techniques are usually required. While such perturbations 
account for unstructured uncertainty coarsely, an augmented plant model with 
structured uncertainty can be used to conciliate the uncertainty representation with 
the physics of the problem. While robust optimization has been studied in various 
disciplines using different uncertainty models, stochastic control synthesis 
remains, to a large extent, unexplored. This paper studies the control design of 
plants with structured uncertainty for both single-input-single-output (SISO) and 
multiple-input-multiple-output (MIMO) systems using a probabilistic approach. 
The joint probability-density-function (PDF) of the parameters is prescribed a 
priori, and then propagated, leading to a probabilistic description of the metrics of 
the controlled response. Control design, involving decoupling, performance and 
stability aspects, is carried out by solving constrained non-linear optimization 
problems in the frequency domain. 
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4.0 CONCLUSIONS AND RECOMMENDED FUTURE TASKS 
Robust control methods provide a methodology for developing structural control systems 
that attain robust performance in the presence of norm-bounded model uncertainty. 
Because of the limitations incurred in the design of system controllers for norm-bounded 
uncertainties mentioned in the papers of the previous chapter, this form of uncertainty 
was not considered in this study. Their primary shortcoming is their overly conservative 
nature often resulting in synthesized controllers that are unable to achieve stringent 
performance requirements.  There are some nonconservative norm-bounded uncertainty 
forms but their applicability to computational model performance prediction 
enhancement has not been demonstrated.  
 
One form of Stochastic Robust Control aims at developing control systems that attain 
some “probability of success level in robust performance” for plants subject to stochastic 
model parameter uncertainty, stochastic input disturbances, and representation 
uncertainty.  Examples of representation uncertainty include approximating an infinite 
dimensional system by a finite dimensional one, or modeling a non-linear system as a 
linear one.  Some representation uncertainties may be handled as stochastic disturbances 
acting directly on the performance measure.  Stochastic Robust Control may apply 
Bayesian Model Averaging over a set of possible plant models, with the plant models 
being generated by sampling the parameter space.  Bayesian Model Averaging is used to 
identify a likely subspace of plant models based on the available measured data.  The 
stochastic inputs then drive these models and probability is implanted to synthesize an 
optimal controller that maximizes the probability of success, minimizes the probability of 
failure, based on a performance measure. Some areas of application for this methodology 
are economics and structural control.  This approach appears suitable for the structural 
control problems of interest and is useful for DOD certification by analysis. 
 
Further research into the practical applications and developments of stochastic robust 
control for enhancing the reliability of performance requirements validation based on 
computational models is warranted. An extended literature survey should be performed 
with an eye toward applications of stochastic robust control methodologies to high order 
systems such as uncertain structural models, applicability to decentralized control and 
substructure synthesis, and rapid uncertainty propagation routines or methodologies. In 
the absence of published results in these and other areas of interest, publishable results 
should be generated including pros or cons with respect to this control synthesis 
methodology. 
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